
Defining Benchmarks for Continual Few-Shot Learning

Antreas Antoniou 1 Massimiliano Patacchiola 1 Mateusz Ochal 1 Amos Storkey 1

Abstract
Both few-shot and continual learning have seen
substantial progress in the last years due to the
introduction of proper benchmarks. That being
said, the field has still to frame a suite of bench-
marks for the highly desirable setting of continual
few-shot learning, where the learner is presented
a number of few-shot tasks, one after the other,
and then asked to perform well on a validation set
stemming from all previously seen tasks. Contin-
ual few-shot learning has a small computational
footprint and is thus an excellent setting for effi-
cient investigation and experimentation. In this
paper we first define a theoretical framework for
continual few-shot learning, taking into account
recent literature, then we propose a range of flexi-
ble benchmarks that unify the evaluation criteria
and allows exploring the problem from multiple
perspectives. As part of the benchmark, we intro-
duce a compact variant of ImageNet, called Slim-
ageNet64, which retains all original 1000 classes
but only contains 200 instances of each one (a
total of 200K data-points) downscaled to 64× 64
pixels. We provide baselines for the proposed
benchmarks using a number of popular few-shot
learning algorithms, as a result, exposing previ-
ously unknown strengths and weaknesses of those
algorithms in continual and data-limited settings.

1. Introduction
Two capabilities vital for an intelligent agent with finite
memory are few-shot learning, the ability to learn from a
handful of data-points, and continual learning, the ability
to sequentially learn new tasks without forgetting previous
ones. There is no question that modern machine learning
methods struggle in combining these two capabilities, while
humans and animals possess them innately.

One of the main reasons behind the scarce consideration
of the liaison between the two is that these problems have
been often treated separately and handled by two distinct

1School of Informatics, University of Edinburgh. Correspon-
dence to: Antreas Antoniou <a.antoniou@sms.ed.ac.uk>.

Support Set 0 
= { , }�0 ��0

��0

Support Set 1
= { , }�1 ��1

��1

Target Set

 = ,� �
�(�( , ), )� �

� �

Labelled Data Available 
to Model for Learning

Data Unavailable 
to Model

Unlabelled Data
Available to Model Learner Model

Learning Phase

Evaluation Phase

 Learner
     �

Support Set N
= { , }�� ���

���

Support Set 1
= { , }�1 ��1

��1

Support Set N
= { , }�� ���

���

Support Set 0
= { , }�0 ��0

��0

� = 0

 Learner
     �

� = 1

Memory
�

Model
�( )0

Model
�( )1

Model
�( )�

Figure 1: High level overview of the proposed benchmark. Top
block: from the left, a learner acquires task-specific information
from each set, one-by-one, without being allowed to view previous
or following sets (memory constraint). The learner can store that
knowledge in a shared memory bank. The stored knowledge can
be used by a given classification model. On the rightmost side,
future tasks are inaccessible to the learner. Central block: the same
process is repeated on the second support set. Note that the first
support set is now inaccessible. Bottom block: once the learner
has viewed all support sets, it is given an evaluation set (target set)
containing new examples of classes contained in the support-sets,
and tasked with producing predictions for those samples. The
evaluation procedure has access to the target set labels and can
then establish a generalization measure for the model.

communities. Historically the research on continual learning
has focused on the problem of avoiding the loss of previous
knowledge when new tasks are presented to the learner,
known as catastrophic forgetting (McCloskey & Cohen,
1989), without paying much attention to the low-data regime.
On the other hand, the research on few-shot learning has
mainly focused on achieving good generalization over new
tasks, without caring about possible future knowledge gain
or loss. Scarce attention has been given to few-shot learning
in the more practical continual learning scenario.

Taken individually these two areas have recently seen dra-
matic improvements mainly due to the introduction of
proper benchmark tasks and datasets used to systemati-
cally compare different methods (Chen et al., 2019; Lesort
et al., 2019a; Parisi et al., 2019). For the set-to-set few-



Defining Benchmarks for Continual Few-Shot Learning

shot learning setting (Vinyals et al., 2016) such benchmarks
include Omniglot (Lake et al., 2015), CUB-200 (Welin-
der et al., 2010), Mini-ImageNet (Vinyals et al., 2016)
and Tiered-ImageNet (Ren et al., 2018), whereas for the
single-incremental-task continual learning setting (Maltoni
& Lomonaco, 2019) and the multi-task continual setting
(Zenke et al., 2017; Lopez-Paz & Ranzato, 2017) the bench-
marks include permuted/rotated-MNIST (Zenke et al., 2017;
Goodfellow et al., 2013), CIFAR10/100 (Krizhevsky et al.,
2009), and CORe50 (Lomonaco & Maltoni, 2017). How-
ever, none of those benchmarks are particularly well suited
for the constrained task of learning on low-data streams.

Few-shot learning focuses on learning from a small (single)
batch of labeled data points. However, it overlooks the pos-
sibility of sequential data streams that is inherent in many
robotics and embedded systems, as well as standard deep
learning training methods, such as minibatch-SGD, where
what we have is effectively a sequence of small batches
from which a learner must teach an underlying model. On
the other hand, continual learning is a broad field encom-
passing many types of tasks, datasets and algorithms. Con-
tinual learning has been applied in the context of general
classification (Parisi et al., 2019), video object recognition
(Lomonaco & Maltoni, 2017), and others (Lesort et al.,
2019c). Most of the investigations are done on continual
tasks of very long lengths, using relatively large batches.
Moreover, each sub-field has their own combinations of
variables (e.g. size and length of sequences) and constraints
(e.g. memory, input type) that define groups of continual
learning tasks. We argue that our proposed setting helps to
formalize and constrain an emerging group of tasks within
a low-data setting.

In this paper we propose a setting that bridges the gap be-
tween these settings, therefore allowing a spectrum starting
from strict few-shot learning going in the middle to short-
term continual few-shot learning and on the other end arriv-
ing at long-term continual learning. We propose doing this
by injecting the sequential component of continual learning
into the framework of few-shot learning, calling this new
setting continual few-shot learning. While we formally de-
fine the problem in Section 3, a high-level diagram is shown
in Figure 1.

In addition to bridging the gap, we argue that the proposed
setting can be useful to the research community for four
additional reasons. 1. As a framework for studying and
improving the sample efficiency of mini-batch stochastic
methods. Mini-batch training is quite inefficient compu-
tationally, because it requires multiple learning iterations
over a dataset to learn a good model. 2. As a minimal and
efficient framework for studying and rectifying catastrophic
forgetting. Improvements can come in two flavors, either
via meta-learning models which can provide insight into

better learning dynamics, or by designing general methods
to rectify the problem. 3. As a framework for studying
continuous adaptations of neural networks under memory
constraints (e.g. robotics, embedded devices) 4. Due to its
continual length and small batch size, CFSL is ideal for
investigating and training meta-learning systems that are
capable of continual learning. We have made sure that all
our settings fit on a single GPU with 11 GBs of memory.

Our main contributions can be summarized as follows:

1. We formalize a highly general and flexible continual
few-shot learning setting, taking into account recent
considerations and concerns expressed in the literature.

2. In order to foster a more focused and organized effort in
investigating continual few-shot learning, we propose a
new benchmark and a compact dataset (SlimageNet64),
releasing them under an open source license.1

3. We compare recent state-of-the-art methods on our
proposed benchmark, showing how continual few-shot
learning is effective in highlighting the strengths and
weaknesses of those methods.

2. Related Work
2.1. Few-Shot Learning

Progress in few-shot learning (FSL) was greatly accelerated
after the introduction of the set-to-set few-shot learning set-
ting (Vinyals et al., 2016). This setting, for the first time,
formalized few-shot learning as a well defined problem
paving the way to the use of end-to-end differentiable algo-
rithms that could be trained, tested, and compared. What
followed was an explosion of progress in the field. Among
the first algorithms to be proposed there were meta-learned
solutions, which here we group into three categories:

Embedding-learning and Metric-learning: Those meth-
ods include the Neural Statistician (Edwards & Storkey,
2017), Matching Networks (Vinyals et al., 2016) and Pro-
toypical Networks (Snell et al., 2017). They are based on the
idea of parameterizing embeddings via neural networks and
then use distance metrics to match target points to support
points in latent space. The whole process is fully differen-
tiable and it is trained such that the model can generalize to
a wide range of tasks.

Optimization-based or Gradient-based Meta-Learning:
Those methods have been introduced in the form of Met-
aLearner LSTM (Ravi & Larochelle, 2016), MAML (Finn
et al., 2017), Meta-SGD (Li et al., 2017) and MAML++ (An-
toniou et al., 2019). The model itself is a model for learning,

1Available from https://zenodo.org/record/
3672132

https://zenodo.org/record/3672132
https://zenodo.org/record/3672132


Defining Benchmarks for Continual Few-Shot Learning

explicitly trained to achieve a particular set of tasks. More
specifically, in such models there is an inner-loop optimiza-
tion process that is partially or fully parameterized with
fully differentiable modules. This inner-loop process is op-
timized such that if a model uses it to learn from a support
set, then it will generalize to a target set. The process that
learns the learner is the outer-loop optimization process.
This mechanism of learning to learn, is often called meta-
learning (Schmidhuber, 1987). Recent methods such as
LEO (Rusu et al., 2019) and SCA (Antoniou & Storkey,
2019) have combined both categories to create very strong
state-of-the-art systems.

Hallucination-based: Those algorithms can utilize one or
both the aforementioned methods in combination with a
generative process, to produce additional samples as a com-
plement to the support set. An example of this approach has
been recently presented by Antoniou et al. (2017).

Other solutions: There have been a number of methods
that do not clearly fall in one of the previous categories.
One example are Bayesian approaches, like those based on
amortized networks (Gordon et al., 2019), hierarchical mod-
els (Grant et al., 2018), or Gaussian Processes (Patacchiola
et al., 2019). Another example are Relational Networks
(Santoro et al., 2017), originally created to deal with rela-
tional reasoning; they have been adapted to the few-shot
learning setting with good performance (Santurkar et al.,
2018). In addition, simpler approaches such as pretraining
of a neural network on all classes and fine tuning on a given
support set, have also shown to perform fairly well (Chen
et al., 2019). Similarly, a method based on nearest neigh-
bor classifier has recently showed to achieve state-of-the-art
performances (Wang et al., 2019).

2.2. Continual Learning

The problem of continual learning (CL), also called life-
long learning, has been considered since the beginnings of
artificial intelligence and it remains an open challenge in
robotics (Lesort et al., 2019c) and machine learning (Parisi
et al., 2019). In standard supervised learning, algorithms can
access any data point as many times as necessary during the
training phase. In contrast, in CL data arrives sequentially
and can only be provided once during the training process.
Following the taxonomy of Maltoni & Lomonaco (2019)
we group the continual learning methods into three classes:
architectural, rehearsal, and regularization methods.

Architectural methods: Architectural strategies add, clone,
or save parts of trained weights (Lesort et al., 2019a). For
example, progressive neural networks (Rusu et al., 2016)
create a new neural network for each new task and con-
nect it to previously generated networks, thus leveraging
previously learned knowledge while solving catastrophic
forgetting. Another architectural strategy includes weight

freezing (Mallya et al., 2018; Mallya & Lazebnik, 2018)
where some weights are frozen dynamically to retain knowl-
edge of old tasks, while leaving others to freely adapt to
new tasks later on.

Rehearsal methods: Rehearsal strategy methods selec-
tively choose which data points to store within a bounded
amount of resources. One such algorithm stores top-N most
representative samples of a class while maintaining a fixed
upper bound on the required memory (Rebuffi et al., 2017).
More recently, generative models such as GANs and VAEs
(Lesort et al., 2018; 2019b) have been proposed to represent
previously seen data as weights of a neural network.

Regularization methods: Unlike other approaches, regu-
larization methods focus on adding constraints on parame-
ter updates of neural networks to directly minimize catas-
trophic forgetting. For example, Elastic Weight Consolida-
tion (EWC, Kirkpatrick et al. 2017; Mitchell et al. 2018)
slows down the learning rate of those weights that are re-
sponsible for previously learned tasks. Other regularization
techniques have been recently presented which follow a sim-
ilar approach (Zenke et al., 2017; Lee, 2017; He & Jaeger,
2018).

All of the outlined approaches offer various advantages
and disadvantages under resource constraints. Architectural
approaches can be constrained on the amount of available
RAM, whereas, rehearsal strategies can become quickly
bounded by the amount of available storage. Regularization
approaches can be free from resource constraints but incur in
severe issues in the way they adapt model parameters. Note
that the outlined strategies are not mutually exclusive and
can be combined (Rebuffi et al., 2017; Maltoni & Lomonaco,
2019; Kemker et al., 2018).

Online learning is a special case of CL where new data
becomes available a single data point at a time. Active
learning can also appear in continual learning settings but it
is a special type of semi-supervised machine learning, that
aims to strategically select unlabeled data points for future
labeling in order to maximize accuracy while reducing the
amount of input provided by the user.

2.3. Inconsistencies in the evaluation protocol

In the literature does not exist a proper benchmark that inte-
grates few-shot and continual learning. Some related tasks
were hastily introduced as a mean to prove the efficacy of
a given system, making such tasks very restricted in terms
of what methods they are applicable on and how many as-
pects they can investigate. We found that tasks and datasets
vary from paper to paper, making it challenging to know
the actual performance of a given algorithm. For instance,
the method proposed by Vuorio et al. (2018), an extention
of MAML able to act as a loss function in the inner loop



Defining Benchmarks for Continual Few-Shot Learning

of the algorithm, has been tested exclusively on variants of
MNIST. The method of Javed & White (2019), an online
meta-objective that minimize catastrophic forgetting, has
been tested on Omniglot and incremental sine-waves. The
work of Finn et al. (2019), another extension of MAML to
the online setting, has been evaluated on MNIST, CIFAR-
100 and PASCAL 3D+. These inconsistencies in the eval-
uation protocol of continual few-shot algorithms further
support our proposal of a unified benchmark.

Related to continual few-shot learning is the field of in-
cremental few-shot learning (Qiao et al., 2018; Gidaris &
Komodakis, 2018). The difference between the two lies in
how the target sets are sampled during the evaluation phase.
In incremental few-shot learning the end performance of
trained models is evaluated on target sets sampled from
classes encountered at meta-training phase as well as new
classes sampled from the evaluation dataset. In continual
few-shot learning, during evaluation, support and target sets
are sampled only from the test set. Incremental and contin-
ual few-shot learning are tangential, the two share similar
objectives but are significantly different in terms of training
and testing procedures. For this reason we will not analyze
this line of research any further.

In conclusion, from this literature analysis it is evident how
the problem of continual few-shot learning is not well de-
fined, making it challenging to benchmark and compare
performance of algorithms. In the next section, we will
focus on formalizing the problem and then we will propose
a unified set of tasks and datasets to encourage consistent
benchmarking.

3. Continual Few-Shot Learning 2

This section contains the core contribution of the article. We
divide the section in three parts: definition of the problem,
where we present a principled formulation of continual few-
shot learning; definition of the procedure, where we detail
the type of tasks that can be used for learning; definition of
the dataset, where we describe the desiderata of a suitable
dataset and introduce SlimageNet64.

3.1. Definition of the problem

In standard few-shot learning (FSL) for classification a
task consists of a small training set (i.e. a support set)
S = {(xn, yn)}NS

n=1 of input-label pairs, and a small val-
idation set (i.e. a target set) T = {(xn, yn)}NT

n=1 of pre-
viously unseen pairs. To reduce notation burden we as-
sume that each data-point x has been flattened into a vec-

2A full specification sheet of the proposed setting can
be found at https://antreasantoniou.github.
io/documents/continual_few_shot_learning_
specifiation.pdf

tor of dimensionality H . Each label y ∈ C with C being
a finite set of classes C = {cn}NC

n=1 ∈ N. Moreover it
is assumed that the pairs in the support and target sets,
have different inputs Sx ∩ T x = {∅} but same class set
Sy = C ∧ T y = C, where we have used the shorthand
Sx = {xn}NS

n=1, Sy = {yn}NS
n=1 (likewise for T ). The ob-

jective of the learner is to perform well on the validation set
T having only access to the labeled data contained in the
support S. The size of the support set NS is defined by the
number of classes NC (way) and by the number of samples
per class K (shot), such that if we have a 5-way/1-shot
setup we end up with NS = NC ×K = 5× 1 = 5.

In a continual few-shot learning (CFSL) task (i.e. an
episode) a single support set is replaced by a sequence
of support sets G = {Sn}NG

n=1 with the target set T =
{(xn, yn)}NT

n=1 now containing previously unseen instances
of classes stemming from G. We will refer to NG, the cardi-
nality of G, as the Number of Support Sets Per Task (NSS).
Here, each support set in G contains NS input-output pairs
and is defined as S = {(xn, yn)}NS

n=1 like in the standard
setup. We also define another parameter, the Class-Change
Interval (CCI), that dictates how often the classes should
change, in numbers of support sets. This correspond to
assign the elements in the support sets to a series of dis-
joint class sets

⋂I
i=1 Ci = {∅}. For example, if CCI=2 then

we will draw support sets whose classes change every 2
samples. As a result, support sets S1 and S2 will contain
different instances of the same class set C1, whereas S3 and
S4 will contain different instances from the class set C2.
The process of generating CFSL tasks is also described in
Algorithm 1 and implemented in the data provider GitHub
repository3.

A learner is a process which extracts task-specific informa-
tion and distills it into a classification model. The model can
be generically defined as a function f(x,θ) parameterized
by a vector of weights θ. At evaluation time the learner is
tested through a loss function

L =
(
f(xT ,θ), yT

)
, (1)

where xT and yT are the input-output pairs belonging to the
target set. Note that we intentionally provided a definition
that is generic enough to fit into different methodologies
and not restricted to the use of neural networks.

To remove the possibility of converting a continual learn-
ing task to a non-continual one, we introduce a restriction,
which dictates that a support set S is sampled from G with-
out replacement, and deleted once it has been used by the
learner. The learner should never have access to more than
one support set at a time, and should not be able to review a

3 The task generator data provider repository can be
found at https://github.com/AntreasAntoniou/
FewShotContinualLearningDataProvider

https://antreasantoniou.github.io/documents/continual_few_shot_learning_specifiation.pdf
https://antreasantoniou.github.io/documents/continual_few_shot_learning_specifiation.pdf
https://antreasantoniou.github.io/documents/continual_few_shot_learning_specifiation.pdf
https://github.com/AntreasAntoniou/FewShotContinualLearningDataProvider
https://github.com/AntreasAntoniou/FewShotContinualLearningDataProvider


Defining Benchmarks for Continual Few-Shot Learning

0 1 2 3 

(A)	New	Samples
CCI	=	4

(D)	New	Classes	
w/	New	Samples

CCI	=	2

(B)	New	Classes	
w/o	Overwrite

CCI	=	1

(C)	New	Classes	
w/	Overwrite
CCI	=	1

0,	1

0,	1

0,	1,	2,	3,
4,	5,	6,	7

0,	1,	2,	3



Figure 2: Visual representation of the four continual few-shot task types. Each row corresponds to a task with Number of Support Sets,
NSS=4, and a defined Class-Change Cnterval (CCI). Given a sequence of support sets, Sn, the aim is to correctly classify samples in the
target set, T . Colored frames correspond to the associated support set labels.

support set once it has moved to the next one. This restric-
tion induces a strict sequentiality in the access of G.

The setup we have described so far is very flexible, and it
allows us to define a variety of different tasks and therefore
to target different problems. In the following section we
provide a description of those tasks and show that they are
consistent with the continual learning literature.

Algorithm 1 Sampling a Continual Few-Shot Task
Data: Given labeled dataset D, number of support sets per

task NSS, number of classes per support set NC ,
number of samples per support set class KS , number
of samples per class for target set KT , class change
interval CCI , and class overwrite parameter O

a = 1, b = 1
for a ≤ (NSS/CCI) do

Sample and remove NC classes from D
for b ≤ CCI do

n← a× CCI + b
Sample KS +KT samples for each of NC classes
Build support Sn with KS samples per class
Build target Tn with KT samples per class
if O = TRUE then

Assign labels {1, . . . , NC} to the classes
else

Assign labels {1+ (a− 1)×NC , . . . , NC × a}
to the classes

end
Store sets Sn and Tn

end
end
Combine all target sets T =

⋃NG

n=1 Tn
Return (S1...NG

, T )

3.2. Task Types 4

In the previous section we have defined the theoretical frame-
work of CFSL, here instead we define an empirical proce-
dure under the form of specific task types. To do so we refer
to the literature on continual learning, which has recently
focused on more structured procedures, without reinventing
the wheel. Note that this is not straightforward, since it is
necessary to align the continual learning definitions with
the few-shot ones. In continual learning, there are three
generally-accepted scenarios in the context of object recog-
nition (Parisi et al., 2019; Lomonaco & Maltoni, 2017):
New Instance (NI), New Class (NC) and New Instance and
Class (NIC).

In NI, new patterns of a known set of classes become avail-
able with each data batch in a sequence. In NC, new classes
become incrementally available. The NIC generalises both
types of tasks and incrementally releases patterns of known
and new sets of classes.

Our categorization of CFSL fully covers the standard contin-
ual learning setting while introducing an additional, super-
class NI setting. Specifically, task A and B are equivalent
to NI and NC, respectively. Task C captures the super-set
NI setting where instances are sampled across super-classes,
instead of being sampled from previously defined class cat-
egories. Finally, task D explores the NIC setting. Figure 2
showcases a high-level visual representation of the proposed
task.

A New Samples:

Definition: In this task type, support sets within a
given task are sampled from the a preselected set of
classes. As a result, any given support set within a
task will share the same classes with all other support
sets within that task, but will have previously unseen

4For a full implementation of a task generator data provider
see Footnote 3



Defining Benchmarks for Continual Few-Shot Learning

Table 1: Dataset comparisons. Dataset details include: number of classes in the whole dataset (# Classes), number of samples per class
(# Samples), total number of images (# Total), Resolution, Format, and finally, Size indicating the allocation of RAM for the whole
dataset. Suitability include: class diversity (Diversity), enough classes (# Classes), enough samples (# Samples), proper size (Size).
Omniglot and SlimageNet64 are the best choices for the tasks on grayscale and RGB datasets, respecitively, according to our suitability
criteria (for details see section 3.4).

Dataset details Suitability (satisfies criteria)
Dataset # Classes # Samples # Total Resolution Format Size (GB) Diversity # Classes # Samples Size
MNIST (LeCun, 1998) 10 7000 70k 28×28 Grayscale ∼0.20 7 7 7 3
Fashion MNIST (Xiao et al., 2017) 10 7000 70k 28×28 Grayscale ∼0.20 7 7 7 3
Omniglot (Lake et al., 2015) 1622 20 ∼32.4k 28×28 Grayscale ∼0.095 3 3 3 3

CUB-200 (Welinder et al., 2010) 200 20-39 6033 ∼475× ∼400 RGB ∼13 7 7 7 3
Mini-ImageNet (Vinyals et al., 2016) 100 600 60k 84×84 RGB ∼4.7 7 7 3 3
Tiered-ImageNet (Ren et al., 2018) 608 600 ∼365k 84×84 RGB ∼29 3 3 3 7

CIFAR-100 (Krizhevsky et al., 2009) 100 600 60k 32×32 RGB ∼0.68 7 7 3 3
CORe50 (Lomonaco & Maltoni, 2017) 10 ∼16.5k ∼165k 128×128 RGB-D ∼30 7 7 7 7

ILSVRC2012 (Russakovsky et al., 2015) 1000 732-1300 ∼1.43M 224×224 RGB ∼800 3 3 7 7

SlimageNet64 (ours) 1000 200 200k 64×64 RGB ∼9.1 3 3 3 3

instances (i.e. samples) of those classes:

∀Si,Sj ∈ G(Sxi ∩ Sxj = {∅} ∧ Syi = Syj = C), (2)

where we have assumed that Si 6= Sj . For example, if
we have 5 classes per support set and 10 support sets,
then by the end of the task we have seen 5 classes, each
with 10 samples. To achieve this, we can set CCI to
be equal to the number of support sets in a given task
(CCI = NSS), which means that for every support set
we sample new instances and the same classes (as in
previous support sets of the same task).

Motivation: Since this setting emulates the default
deep learning training regime, it can be useful in study-
ing mini-batch stochastic optimization models as well
as meta-learning more efficient algorithms for doing
so. It can also be useful when such processes must be
executed on a robotic or embedded system.

B New Classes:
Definition: In this task type, each support set has dif-
ferent classes from the other support sets within a given
task, formally we write:

∀Si,Sj ∈ G(Sxi ∩Sxj = {∅} ∧Syi ∩S
y
j = {∅}), (3)

with Si 6= Sj . Similarly to the previous task, here we
focus on the case where every class has just a single
associate input x (1-shot). In this task each class within
each support set has a corresponding unique output unit
in the model. For example, if each support set contains
5 classes and we have 10 support sets, the model will
have a total of 50 output units, one for each class. To
achieve this, we set CCI to 1, which means that for
every task we sample new classes.

Motivation: This setting emulates standard continual
learning, where new concepts/classes are acquired as
the agent receives a data stream. Therefore it is very
useful as a means to investigate such settings or meta-
learn models that do well on it. Since this setting

allows expanding the number of class descriptors, it
is not forced to explicitly rewrite previous knowledge
at the class-level, however, it almost always will be
required to rewrite representations at lower-levels.

C New Classes with Overwrite:

Definition: This task is identical to the previous one
in terms of how support set inputs are sampled.

The only difference is that the true labels in each sup-
port set are overwritten by new labels in C. This is
achieved using the surjective function O : y 7→ ỹ
that takes as input the labels of a support set Sy
and a class set C̃, and returns a new support set
S̃ = {(xn, ỹn)}NS

n=1, with ỹ ∈ C̃. We can formally
write this as:

∀Si,Sj ∈ G(Sxi ∩ Sxj = {∅} ∧ Syi ∩ S
y
j = {∅}∧

O(Syi , C̃) = O(Syj , C̃) = S̃yi = S̃yj = C̃),

(4)

where Si 6= Sj . This task is similar to task A in terms
of the number of output units, however, in task C a
single output unit is associated with more than one true
class. Intuitively, C̃ could be the hierarchical categories
of classes in Gy = ∪NG

n=1Syn, however, we assign the
hierarchical categories arbitrarily.

In practical terms, if we have 5 classes and 10 support
sets, in this task the model only uses 5 output units to
store all 50 classes. Therefore, for every support set
the output unit of a specific class is overwritten with a
new one. To obtain this task we need to set CCI to 1,
then apply the overwrite function.

Motivation: This setting emulates situations where an
agent is tasked with learning data-streams while being
limited in storing that knowledge in a preset number
of output classification labels. As a result the agent
learns super classes. This setting is useful in investigat-
ing how effective a learner is in continually updating



Defining Benchmarks for Continual Few-Shot Learning

a class descriptor while not forgetting previous de-
scriptions. Since this setting does not allow expanding
the number of class descriptors, it is forced to explic-
itly rewrite previous knowledge at the class-level, with
which certain types of models might struggle more than
others. This setting is especially useful for robotics
and embedded system applications.

D New Classes with New Samples:
Definition: In this task type, the sampled support sets
contain different instances of the same classes for some
predefined CCI (1 < CCI < NSS) such that

∀Si,Sj ∈ G(Syi = Syj ↔ Si ∈ Gk ∧ Sj ∈ Gk), (5)

where Gk is a partition of the task set G satisfying

|Gk| = CCI,
NG/CCI⋂
k=1

Gk = {∅},
NG/CCI⋃
k=1

Gk = G. (6)

Note that this partitioning ensures that the subsets are
pairwise disjoint. If we have 5 classes per support
set, 10 support sets and a CCI of 5, we end up with
5 support sets containing samples from 5 classes and
other 5 support sets containing samples from 5 different
classes. This makes a total of 10 classes, each one
containing 5 samples.

Motivation: This setting emulates situations where an
agent is tasked with both learning new class descriptors
and updating such descriptors by observing new class
instances. This setting sheds light on how agents can
perform on a setting that mixes all previous settings
into one.

3.3. Metrics

In this section we provide a number of metrics useful in
comparing different models applied to the CSFL setting. It is
important to note that each one of this metrics only provides
a quantifier for a desirable property. Whether a model is
superior to another can only be said when comparing them
on the same metric. Whether a model is more desirable than
another depends on the task and hardware that a system is
trying to solve.

3.3.1. TEST GENERALIZATION PERFORMANCE

A proposed model should be evaluated on at least the test
sets of Omniglot and SlimageNet, on all the tasks of interest.
This is done by presenting the model with a number of pre-
viously unseen continual tasks sampled from these test sets,
and then using the target set metrics as the task-level gen-
eralization metrics. To obtain a measure of generalization
across the whole test set the model should be evaluated on a

number of previously unseen and unique tasks. The mean
and standard deviation of both accuracy and performance
should be used as generalization measures to compare mod-
els.

3.3.2. ACROSS TASK MEMORY (ATM)

Even though we have imposed a restriction on the access to
G, the learner is still authorized to store in a local memory
bankM some representations of the inputs and/or output
vectors (often implemented as embedding vectors or inner
loop parameters)

M = {(x̂, ŷ)S1 , ..., (x̂, ŷ)SNG
}, (7)

where x̂ and ŷ are representations of x and y obtained after
a given learner has processed x and y and stored some of
their useful components. Most learners will be compressing
a given support set, but this is not strictly the case.

Note that the potential compression rate is not directly cor-
related to the complexity of the model (e.g. number of
parameters, FLOPs, etc). For instance, compression can be
achieved by removing some of the dimensions of the input,
or by using a lossless data compression algorithm, which
may not require additional parameters or may have minimal
impact on the execution time. In this regard, the concept
of memory bankM helps to disambiguate model complex-
ity from any additional memory allocated for compressed
representations of inputs. We can use the cardinality ofM,
indicated as |M|, to quantify the learner efficiency. Given
two learners with their corresponding models f(x,θ1) and
f(x,θ2), and assuming that the size of θ1 is equal to the
size of θ2 with L1 = L2, then the learner with smaller
cardinality |M| must be preferred.

In order to compare performances across different tasks
and datasets, we relate the size of the stored task-specific
representations (in bytes)Mx̂ (e.g. embedding vectors in
ProtoNets, and inner loop parameters for MAML) during
task-specific information extraction to the size of vectors
(in bytes) x contained in the episode Gx = ∪NG

n=1Sxn . Recall
that x̂ is a compressed version of x and therefore F < H .
To reduce the notation burden we have only considered the
inputs x and not the targets y, since x is significantly larger
than y. Based on these considerations we define Across-
Task Memory (ATM)

ATM =
|Mx̂|
|Gx|

, (8)

whereMx̂ is the stored representation of a series of support
sets and Gx is the size of the support sets. Note that for each
utilized floating point arithmetic unit we include a computa-
tion that takes into account the floating point precision level.
For example, if bothMx̂ and Gx use the same floating point
standard then it is divided out, but if the representational



Defining Benchmarks for Continual Few-Shot Learning

form uses a lower precision than the actual data-points then
it becomes compressive. From a practical standpoint (image
classification), the ATM can be estimated relating the total
number of bytes stored in the memory bank (ATM numera-
tor) with the total number of bytes over all the images in the
episode (ATM denominator). Given the definition above:
ATM < 1 for learners with efficient memory, ATM = 0
for learners with no memory, and ATM > 1 for learners
with inefficient memory. Note that the ATM is undefined
for empty episodes G = {∅}. ATM is task/dataset agnostic
and can be used to compare various models (or the same
model) across different settings.

To summarize ATM is useful for the following reasons:

1. We do not restrict our agents to a specific amount of
memory for their continual task learning. As a result,
an agent could easily store whole support sets into
its memory bank. We want to be able to distinguish
between more memory efficient models (that might
in compress support sets efficiently) and less memory
efficient models.

2. Using default measures of computational capacity such
as MACs is not enough. MACs do not quantify the ac-
tual memory shared across the learning process, but in-
stead quantifies the overall computational requirements
of the models. Such memory requirements might be
minuscule when compared to the model architecture
functions which are usually orders of magnitude more
expensive. Therefore there is a need for a quantifier
that focuses on the efficiency of the learner at compress-
ing incoming data, and how that varies with additional
number of support sets.

3.3.3. MULTIPLY-ADDITION OPERATIONS (MACS)

This metric measures the computational expense of both
the learner and the model operations during learning and
inference time. This is different than ATM, as ATM reflects
how much memory is required to store information about a
support when the next support set is observed, whereas the
inference memory footprint measures the memory footprint
that the model itself needs to execute during one cycle of
inference, and meta-learning cycle.

3.3.4. FSL VS CFSL VS CL

At this point, it is important to properly explain what the
relationship between FSL, CSFL and CL is. We argue
that all three belong in a spectrum within which the free
variables are size of an incoming support set, and the number
of support sets within a task. If the size of a support set is
very small, e.g. five samples consisting of a single sample
from five classes and the number of support sets is one, then
we have few-shot learning. If we increase the number of

support sets to more than one up to a hundred steps, we have
CFSL. Once we begin to increase the size of the support set
to something reminiscent of standard deep learning training
(e.g. within the range of 32-256 where most models are
trained) and we increase the number of support sets into
the thousands, we end up with the full continual learning
setting.

3.4. Datasets

Properly training and evaluating a CFSL agent can be an
arduous process. Building such tasks requires datasets that
meet the following desiderata:

1. Diversity: An optimal dataset should have a very high
degree of diversity in terms of classes. This enforces
robustness in the learning procedure, since the model
has to be able to deal with previously unseen class
semantics. In addition, diversity enable the training,
validation, and test splits to lie within different distri-
bution spaces, covering classes that are significantly
different from one another.

2. Number of classes: The dataset should contain a very
high number of categories. This is to ensure that we can
train models on CFSL tasks ranging from 1 sub-task,
all the way to 100s of sub-tasks. Ideally, the length of
a sub-task sequence should not be constrained by the
number of classes in the dataset.

3. Number of samples per class: The dataset should
contain a fair, but not overabundant, number of sam-
ples per class. On the one hand, a dataset with few
samples can not capture the difference in distribution
within each class, resulting in a poor evaluation mea-
sure. Moreover, training a learner on a small dataset
can produce significant underfitting issues. On the
other hand, having too many samples per class in-
creases the training time, producing very strong learn-
ers but neutralizing the difference among them. As a
result, it would be much harder to draw any conclusion
on the capabilities of the underlying algorithms, since
the difference in performance between them would be
minimal.

4. Size: Finally, we would like our models to be trained in
reasonable time, finances and computational resources.
Thus, the size of the dataset should be contained, such
that it can be easily managed and stored in memory.
This requirement is crucial to allow use of the dataset
by a significant portion of the research community.
Here, we define a dataset as appropriate if its size does
not exceed 16 GB, which is our reasonable estimate of
the average laptop RAM.



Defining Benchmarks for Continual Few-Shot Learning

Table 2: Accuracy and standard deviation (percentage) on the test set for the proposed benchmarks and tasks. Best results in bold.
Task Type FSL B C A D B C A D B C A
NSS 1 3 3 3 4 5 5 5 8 10 10 10
CCI 1 1 1 3 2 1 1 5 2 1 1 10
Overwrite - False True True False False True True False False True True

O
m

ni
gl

ot

Init + Tune 43.05+−0.01 10.87+−0.01 27.51+−0.01 44.76+−0.01 8.74+−0.01 6.15+−0.01 24.52+−0.01 45.30+−0.01 3.93+−0.01 3.12+−0.01 22.16+−0.01 45.64+−0.01
Pretrain + Tune 33.07+−2.04 9.97+−0.14 26.75+−0.27 32.44+−0.29 7.91+−0.15 6.02+−0.02 24.51+−0.06 31.89+−1.10 3.86+−0.06 3.13+−0.03 22.30+−0.06 33.17+−0.39
ProtoNets 98.52+−0.04 95.30+−0.12 45.44+−0.19 98.73+−0.02 48.98+−0.03 91.52+−0.20 35.10+−0.09 98.73+−0.12 48.44+−0.03 83.72+−0.19 27.39+−0.17 98.65+−0.14
MAML++ L 99.46+−0.03 38.18+−0.14 46.12+−0.15 99.38+−0.07 28.87+−0.07 22.69+−0.07 35.76+−0.14 99.41+−0.04 14.29+−0.05 11.30+−0.02 27.82+−0.03 99.44+−0.01
MAML++ H 99.54+−0.03 96.14+−0.02 96.77+−0.08 99.73+−0.04 49.44+−0.02 92.70+−0.03 93.47+−0.05 99.80+−0.01 49.00+−0.04 85.56+−0.10 86.38+−0.14 99.86+−0.01
SCA 99.78+−0.01 96.84+−0.04 97.38+−0.02 99.82+−0.01 49.71+−0.01 93.81+−0.02 94.08+−0.45 99.88+−0.03 49.51+−0.01 86.07+−0.03 87.29+−0.19 99.88+−0.01

Sl
im

ag
eN

et
64

Init + Tune 25.1+−0.01 8.4+−0.01 21.3+−0.01 24.4+−0.01 6.1+−0.01 4.5+−0.01 20.8+−0.01 24.7+−0.01 3.0+−0.01 2.4+−0.01 20.5+−0.01 24.9+−0.01
Pretrain + Tune 24.5+−0.60 8.7+−0.03 21.9+−0.11 24.2+−0.17 6.4+−0.01 4.9+−0.02 21.2+−0.05 24.5+−0.23 3.3+−0.03 2.7+−0.03 20.7+−0.10 24.4+−0.20
ProtoNets 41.8+−0.16 24.1+−0.05 25.9+−0.23 43.1+−0.24 15.1+−0.03 18.2+−0.14 22.7+−0.09 43.3+−0.03 10.4+−0.12 12.3+−0.09 21.0+−0.06 43.7+−0.15
MAML++ L 42.0+−0.48 13.6+−0.04 25.5+−0.23 42.7+−0.10 10.2+−0.11 7.9+−0.13 22.6+−0.03 43.0+−0.12 5.0+−0.08 3.6+−0.14 20.8+−0.09 43.0+−0.42
MAML++ H 45.3+−0.14 27.2+−0.25 33.8+−0.16 61.2+−0.36 16.8+−0.18 21.0+−0.21 30.4+−0.51 68.6+−0.47 12.3+−0.11 14.4+−0.12 25.7+−0.10 75.6+−0.10
SCA 46.6+−0.16 27.9+−0.16 34.0+−0.23 65.3+−0.15 17.3+−0.07 22.0+−0.18 30.1+−0.36 72.0+−0.36 12.7+−0.08 14.6+−0.07 26.3+−0.13 77.4+−0.06

Many datasets already exist in continual and few-shot learn-
ing, however most of them do not satisfy all the aforemen-
tioned requisites and are insufficient for robust benchmark-
ing of CFSL algorithms. Omniglot (Lake et al., 2015) was a
good first choice for a lower-difficulty dataset, however, we
were still missing a higher complexity dataset with coloured
images.

For this reason we propose a new variant of ImageNet64×64
(Chrabaszcz et al., 2017), named SlimageNet64 (derived
from Slim and ImageNet). SlimageNet64 consists of
200 instances from each of the 1000 object categories of
the ILSVRC-2012 dataset (Krizhevsky et al., 2012; Rus-
sakovsky et al., 2015), for a total of 200K RGB images
with a resolution of 64 × 64 × 3 pixels. We created this
dataset from the downscaled version of ILSVRC-2012, Ima-
geNet64x64, as reported in (Chrabaszcz et al., 2017), using
the box downsampling method available from Pillow library.
In Table 1 we report a detailed comparison of all the datasets
available, showing how SlimageNet64 is an optimal choice
in terms of diversity, number of classes, number of samples
per class, and storage size. The closest alternative to Slima-
geNet64 is Tiered-ImageNet (Ren et al., 2018), a subset of
ILSVRC-12 with a total of 608 classes. Comparing the two,
SlimageNet64 contains more classes and overall has a higher
class diversity across train, validation, and test. Moreover,
it has a lower computational footprint due to the smaller
resolution of the images and the lower number of samples
per class. These characteristics make SlimageNet64 more
compact and at the same time more challenging.

4. Experiments 5

For the purposes of establishing baselines in the CFSL tasks
outlined in this paper we chose to use six existing FSL
methods: (i) randomly initializing a convolutional neural
network, and fine tuning on incoming tasks, (ii) pretraining
a convolutional neural network on all training set classes

5We provide an implemetation that reproduces all the
experiments in this section at https://github.com/
AntreasAntoniou/FewShotContinualLearning

and then fine-tune on sequential tasks (Chen et al., 2019),
(iii) Prototypical Networks (Snell et al., 2017) (baseline
for metric-based FSL methods), (iv) the Improved Model
Agnostic Meta-Learning or MAML++ L (Low-End) model
(Antoniou et al., 2019) (baseline for optimization based FSL
methods), (v) MAML++ H (High-End) model (Antoniou
& Storkey, 2019) (dense-net backbone, squeeze excite at-
tention, mid-tier baseline), and (vi) the Self-Critique and
Adapt model (SCA) (Antoniou & Storkey, 2019), a top state-
of-the-art algorithm for FSL (high-tier baseline). For each
model, we used the exact configurations specified in their
original papers. For each method (apart from ProtoNets) we
used five inner-loop update steps.

For each continual learning task type, we ran experiments
on each dataset. Each support set contained 1 sample from
5 classes (5-way, 1-shot) while the target sets contained
5 samples from all the classes seen in a given task. We
ran experiments using 1, 3, 5 and 10 support sets for each
continual task, therefore creating tasks of increasingly long
number of sub-tasks. We ran each experiment 3 times, each
time with different seeds for the data-provider and the model
initializer. All models were trained for 250 epochs, where
each epoch consisted of 500 update steps, each one done
on a single continual task, using the default configuration
of the Adam learning rule, and weight-decay of 1e-5. At
the end of each training epoch we validated a given model
by applying it on 600 randomly sampled continual tasks,
keeping those tasks consistent across all validation phases.
Once all epochs have been completed, we built an ensemble
of the top five models across all epochs with respect to
validation accuracy, and applied that on 600 random tasks
sampled from the test set, to compute the final performance
metrics.

For Omniglot, we used the first 1200 classes for the train-
ing set, and we split the rest equally to create a validation
and test set. For SlimageNet64, we used 700, 100 and 200
classes to build our training, validation and test sets respec-
tively. The SlimageNet64 splits were chosen such that the
training set had mostly living organisms, with some addi-
tional everyday tools and buildings, while the validation

https://github.com/AntreasAntoniou/FewShotContinualLearning
https://github.com/AntreasAntoniou/FewShotContinualLearning


Defining Benchmarks for Continual Few-Shot Learning

Figure 3: ATM (Across-Task Memory) and MAC (Multiply-Accumulate Computations) costs for a variety of NSS (Number of Support
Sets Per Task). ProtoNets are the superior method across the board. In terms of ATM it is worth noting that methods such as MAML++ H
and SCA tend to become incrementally cheaper than MAML++ L as the number of support sets increases. Whereas in terms of MACs
MAML++ H and SCA are the most expensive by an order of magnitude or more compared to MAML++ L and ProtoNets.

and test sets contained largely inanimate objects. This was
done to ensure sufficient domain-shift between the training
and evaluation distributions. As a result this enables a more
robust generalization measure to be computed.

5. Baseline Results
Results are reported in Table 2 and Figure 4. The results
from our proposed benchmark, have revealed previously
unknown weaknesses and strengths of existing few-shot
learning methods. In Omniglot, in the New Classes with-
out Overwrite Setting (B) MAML++ Low-End is inferior
to ProtoNets, whilst in the New Classes with Overwrite
Settings (C) this result is reversed. From this we can infer
that embedding-based methods are better at retaining infor-
mation from previously seen classes, assuming that each
new class remains distinct. However, when overwriting is
enabled this trend is overturned because ProtoNet proto-
types are shared by a number of super-classes containing
classes that are harder to semantically disentangle. Gra-
dient based methods such as MAML++ dominate in this
setting, since they can update their weights towards new
tasks, and therefore achieve a better disentanglement of
those super-classes. SCA and High-End MAML++ (which
utilize both embeddings and gradient-based optimization)
produce the best performance across all settings. In the New
Samples Setting (A), gradient based methods tend to out-
perform embedding-based methods while hybrid methods
produce the best results. Furthermore, in the New Classes

and Samples Setting (D), embedding-based methods out-
perform gradient-based methods, whilst hybrid methods
continue to produce the best performing models.

In SlimageNet, ProtoNets seem to consistently outperform
the Low-End MAML++ model, even in the New Classes
with Overwrite Settings (C) where it was previously inferior.
This might indicate that in SlimageNet retaining informa-
tion about previously seen tasks is more important than
disentangling complicated super-classes. Overall models
that use both embedding-based and gradient-based meth-
ods, seem to outperform methods that do just one of the
two often with a performance boost of 100-200%. In the
New Classes and Samples Setting (D), embedding-based
methods outperform gradient-based ones by a significant
margin, while hybrid approaches consistently generate the
best performing models. Interestingly, in the New Sam-
ples Setting (A) using SlimageNet64, the embedding-based
and gradient-based methods produce very similar results to
one another, whereas in Omniglot gradient-based methods
dominate.

Furthermore Figure 3 shows the ATM and MAC costs for a
range of NSS, starting from one, up to and including 640.
Some notable observations include the fact that ProtoNets
are simply the most efficient in both metrics, by two or-
ders magnitude. In addition, even though the Low-End
MAML++ starts off cheaper than the high end model, as
NSS increases, it eventually becomes far more expensive
than the High-End variant. This is mostly due to the fact



Defining Benchmarks for Continual Few-Shot Learning

Figure 4: Accuracy (percentage) of different methods on the Omniglot and SlimageNet datasets for different values of Number of Support
Sets Per Task (NSS). We report both with/without overwrite. This figure illustrates which methods tend to be more robust to increasing
NSS (SCA, MAML ++ H) and which methods do not (ProtoNets, MAML++ L, Init/Pretrain + Tune), as well as to how sensitive they are
to those changes.

that the Low-End MAML++ flattens its features and applies
a linear layer at the output side of the network. As a result,
for each additional new class to be learned, there is one mag-
nitude higher cost than the high-end MAML which simply
global pools its features before applying a linear layer.

6. Conclusion
In this paper, we have introduced a new flexible and exten-
sive benchmark for Continual Few-shot Learning. We have
also introduced a new minimal variant of ImageNet, called
SlimageNet64, that contains all of ImageNet classes, but
only 200 samples from each class, downscaled to 64×64.
The dataset requires just 9 GB of RAM, and it can be eas-
ily loaded in memory for faster experimentation. Further-
more, we have run experiments on the proposed bench-
marks, utilizing a number of popular few-shot learning
models and baselines. In doing so, we have found that
embedding-based models tend to perform better when in-
coming tasks contain different classes from one another,
potentially due to better task-specific information retention.
On the other hand, gradient-based methods tend to perform
better when the task-classes form super-classes of randomly
combined classes, resulting in a disentangled task that is
harder to predict. Gradient-based methods work better here
thanks to their ability of dynamic adaptation, whereas more
static methods like ProtoNets tend to produce poorer perfor-
mances. That being said, in datasets of higher class diversity
and sample complexity, gradient-based methods perform
like embedding-based methods. We assume that this is due
to the nature of the data, making class-information retention
more relevant than disentanglement factors. Methods uti-
lizing both embedding-based and gradient-based methods
(i.e. High-End MAML++ and SCA) outperform methods
that use either of the two. In conclusion, we hope that the
proposed benchmark and dataset, will help increasing the
rate of progress and the understanding of the behavior of
systems trained in a continual and data-limited setting.

7. Acknowledgements
We would like to thank Elliot Crowley, Paul Micaelli,
Eleanor Platt, Ondrej Bohdal, Sen Wang, and Joseph Mel-
lor for reviewing this work and providing useful sugges-
tions/comments. This work was supported in part by the EP-
SRC Centre for Doctoral Training in Data Science, funded
by the UK Engineering and Physical Sciences Research
Council (Grant No. EP/L016427/1) and the University
of Edinburgh as well as a Huawei DDMPLab Innovation
Research Grant. Furthermore, additional funding for the
project was provided by a joint grant by the UK Engineering
and Physical Sciences Research Council and SeeByte Ltd
(Grant No. EP/S515061/1).

References
Antoniou, A. and Storkey, A. Learning to Learn by

Self-Critique. Neural Information Processing Systems,
NeurIPS, 2019.

Antoniou, A., Storkey, A., and Edwards, H. Data Augmen-
tation Generative Adversarial Networks. arXiv preprint
arXiv:1711.04340, 2017.

Antoniou, A., Edwards, H., and Storkey, A. How to train
your MAML. In International Conference on Learning
Representations, 2019.

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C., and Huang,
J.-B. A Closer Look at Few-Shot Classification. In Inter-
national Conference on Learning Representations, 2019.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. A Downsam-
pled Variant of Imagenet as an Alternative to the CIFAR
datasets. Computing Research Repository, 2017.

Edwards, H. and Storkey, A. Towards a neural statistician.
In International Conference on Learning Representations,
2017.



Defining Benchmarks for Continual Few-Shot Learning

Finn, C., Abbeel, P., and Levine, S. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. arXiv
preprint arXiv:1703.03400, 2017.

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. Online
Meta-Learning. arXiv preprint arXiv:1902.08438, 2019.

Gidaris, S. and Komodakis, N. Dynamic Few-Shot Visual
Learning without Forgetting. In Computer Vison and
Pattern Recognition, 2018.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic for-
getting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and
Turner, R. Meta-learning probabilistic inference for pre-
diction. In International Conference on Learning Repre-
sentations, 2019.

Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths, T.
Recasting gradient-based meta-learning as hierarchical
bayes. arXiv preprint arXiv:1801.08930, 2018.

He, X. and Jaeger, H. Overcoming Catastrophic Interference
using Conceptor-Aided Backpropagation. International
Conference on Learning Representations, 2018.

Javed, K. and White, M. Meta-learning representations
for continual learning. arXiv preprint arXiv:1905.12588,
2019.

Kemker, R., McClure, M., Abitino, A., Hayes, T. L., and
Kanan, C. Measuring catastrophic forgetting in neural
networks. In Association for the Advancement of Artificial
Intelligence, 2018.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Neural Information Processing Systems, 2012.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 2015.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Lee, S. Toward continual learning for conversational agents.
arXiv preprint arXiv:1712.09943, 2017.

Lesort, T., Dı́az-Rodrı́guez, N., Goudou, J.-F., and Filliat,
D. State representation learning for control: An overview.
Neural Networks, 2018.

Lesort, T., Caselles-Dupré, H., Garcia-Ortiz, M., Stoian, A.,
and Filliat, D. Generative models from the perspective of
continual learning. In International Joint Conference on
Neural Networks, 2019a.

Lesort, T., Gepperth, A., Stoian, A., and Filliat, D. Marginal
replay vs conditional replay for continual learning. In
International Conference on Artificial Neural Networks.
Springer, 2019b.

Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D.,
and Dı́az-Rodrı́guez, N. Continual learning for robotics:
Definition, framework, learning strategies, opportunities
and challenges. arXiv preprint arXiv:1907.00182, 2019c.

Li, Z., Zhou, F., Chen, F., and Li, H. Meta-SGD: Learning
to Learn Quickly for Few Shot Learning. arXiv preprint
arXiv:1707.09835, 2017.

Lomonaco, V. and Maltoni, D. Core50: A New Dataset and
Benchmark for Continuous Object Recognition. arXiv
preprint arXiv:1705.03550, 2017.

Lopez-Paz, D. and Ranzato, M. Gradient Episodic Memory
for Continual Learning. In Advances in Neural Informa-
tion Processing Systems, 2017.

Mallya, A. and Lazebnik, S. Packnet: Adding multiple tasks
to a single network by iterative pruning. In Computer
Vison and Pattern Recognition, 2018.

Mallya, A., Davis, D., and Lazebnik, S. Piggyback: Adapt-
ing a single network to multiple tasks by learning to mask
weights. In Proceedings of the European Conference on
Computer Vision, 2018.

Maltoni, D. and Lomonaco, V. Continuous learning in
single-incremental-task scenarios. Neural Networks,
2019.

McCloskey, M. and Cohen, N. J. Catastrophic interference
in connectionist networks: The sequential learning prob-
lem. Elsevier, 1989.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang,
B., Betteridge, J., Carlson, A., Dalvi, B., Gardner, M.,
Kisiel, B., et al. Never-ending learning. Communications
of the ACM, 2018.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 2019.



Defining Benchmarks for Continual Few-Shot Learning

Patacchiola, M., Turner, J., Crowley, E. J., and Storkey, A.
Deep kernel transfer in gaussian processes for few-shot
learning. arXiv preprint arXiv:1910.05199, 2019.

Qiao, S., Liu, C., Shen, W., and Yuille, A. L. Few-Shot im-
age recognition by predicting parameters from activations.
In Computer Vison and Pattern Recognition, 2018.

Ravi, S. and Larochelle, H. Optimization as a model for Few-
Shot Learning. In International Conference On Learning
Representations, 2016.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert,
C. H. ICARL: Incremental Classifier and Representation
Learning. In Computer Vison and Pattern Recognition,
2017.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K.,
Tenenbaum, J. B., Larochelle, H., and Zemel, R. S. Meta-
Learning for Semi-Supervised Few-Shot Classification.
arXiv preprint arXiv:1803.00676, 2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet Large Scale
Visual Recognition Challenge. IJCV, 2015.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive Neural Networks. arXiv preprint
arXiv:1606.04671, 2016.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu,
R., Osindero, S., and Hadsell, R. Meta-Learning with La-
tent Embedding Optimization. International Conference
On Learning Representations, 2019.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple
neural network module for Relational Reasoning. In
Neural Information Processing Systems, 2017.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. How
Does Batch Normalization Help Optimization? Neural
Information Processing Systems, 2018.

Schmidhuber, J. Evolutionary principles in self-referential
learning. On learning how to learn: The meta-meta-...
hook.) Diploma thesis, Institut f. Informatik, Tech. Univ.
Munich, 1987.

Snell, J., Swersky, K., and Zemel, R. Prototypical Networks
for Few-Shot Learning. In Neural Information Processing
Systems, 2017.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
Matching Networks for One Shot Learning. In Neural
Information Processing Systems, 2016.

Vuorio, R., Cho, D., Kim, D., and Kim, J. Meta Continual
Learning. Computing Research Repository, 2018.

Wang, Y., Chao, W.-L., Weinberger, K. Q., and van der
Maaten, L. SimpleShot: Revisiting Nearest-Neighbor
Classification for Few-Shot Learning, 2019.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F.,
Belongie, S., and Perona, P. Caltech-UCSD birds 200.
2010.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learn-
ing Algorithms, 2017.

Zenke, F., Poole, B., and Ganguli, S. Continual Learning
through Synaptic Intelligence. In International Confer-
ence on Machine Learning, 2017.


